
Data Science at Supercomputer Scale
Mike Ringenburg, Cray
NERSC Big Data Summit 2018

Cray, Supercomputing and Data Science
● Cray: a supercomputing pioneer since 1976

2
Big Data Summit 2018 Copyright 2018 Cray, Inc.

Cray, Supercomputing and Data Science
● Cray: a supercomputing pioneer since 1976
● Supercomputing is changing

● Increasingly seeing need for data science in scientific
computing and other traditional HPC environments
● Scientific use of AI
● Training at large scale

● Collaborating with NERSC BDC, Intel, and other
partners to understand landscape and develop
solutions

3
Big Data Summit 2018 Copyright 2018 Cray, Inc.

Cray, Supercomputing and Data Science

● Cray: a supercomputing pioneer since 1976
● Supercomputing is changing

● Increasingly seeing need for data science in scientific
computing and other traditional HPC environments
● Scientific use of AI
● Training at large scale

● Collaborating with NERSC BDC, Intel, and other
partners to understand landscape and develop
solutions

● Current efforts
● Urika-GX analytics platform
● Urika-XC and Urika-CS software stack
● The Cray PE ML Plugin
● Alchemist

● Where we are headed
● End-to-end workflows
● The convergence of AI and Simulation

4
Big Data Summit 2018 Copyright 2018 Cray, Inc.

Scaling Deep Learning

What is Deep Learning: A Specific Example

● An organic gardener is building a robot in his garage to recognize the
10 insects found in his garden, and decide which ones to kill with a
laser

● The robot will have a camera, and will capture JPEG files of the
insects

● The robot needs a ‘program’ to classify each JPEG according to
which of the 10 kinds of insect was photographed

JPEG ‘Program’

“That’s a

Japanese

beetle”!

Big Data Summit 2018 Copyright 2018 Cray, Inc.
6

Inputs & Outputs

● Our input is a JPEG
● 224x224 pixels, 3 colors à a 224x224x3

element vector of the pixel values
● Our output is a classification

● One of 10 categories à a 10 element
vector with a “1” in the position representing
the category to which the image belongs

How many “IF” statements will we
need to figure out that a bunch of
pixel values is a Japanese beetle?

Big Data Summit 2018 Copyright 2018 Cray, Inc.
7

Bruce Marlin
(CC BY 3.0: Attribution 3.0 Unported)

This is an Artificial Intelligence Problem

● If you can’t get the output from the input with a bunch
of loops and conditionals, it’s AI

● But, if that won’t work, how can we do it?

● Hint #1: Any mapping of inputs to outputs is a function
● Hint #2: A function can be approximated using a (good)

approximating function

Big Data Summit 2018 Copyright 2018 Cray, Inc.
8

An Approximating Function

● How can we determine a good approximating function?
● Choose its form (linear, polynomial, …)
● Minimize the overall error at a finite number of inputs with known

outputs - - fit the curve
● We have to find the values of the free parameters of the function that

minimize the error – it doesn’t matter how we do it

Fitting the curve is a lot like training the function
to know the answer for arbitrary inputs

Big Data Summit 2018 Copyright 2018 Cray, Inc.
9

Training via Gradient Descent
● We want to approximate y=f(x)

● Find a function that maps a set of
inputs to a set of outputs, to some
level of accuracy

● We know yi=f(xi), for i=1,N
● Iterate:

● First iteration only: initialize the free
parameters of f

● Calculate error (over N known points)
● Calculate gradient of error, as a

function of the free parameters of f
● Adjust the free parameters of f a

‘small’ distance in the direction of
negative of error gradient

● Assess convergence & stop when
‘good enough’

Big Data Summit 2018 Copyright 2018 Cray, Inc.
10

Calculate
gradient, using

the entire
training set

Use gradient to
update the

model

Converged? DoneYes

No

A Really Useful Kind of Function
● This image shows a

deep neural network
● An approximating

function, with free
parameters called
weights and biases

● Deep networks have
been found to be
especially powerful

● Neural networks can
approximate any
continuous function
arbitrarily wellX

f(X)

Big Data Summit 2018 Copyright 2018 Cray, Inc.
11

HPC Attributes of Deep Learning

● Today we’ll hear examples of a number of deep learning
applications that require HPC-scale resources to train
● Cosmology

● Climate

● Life Sciences

● DL training is a classic high-performance computing problem
which demands:
● Large compute capacity in terms of FLOPs, memory capacity and bandwidth

● A performant interconnect for fast communication of gradients and model

parameters in order to scale up

● Parallel I/O and storage with sufficient bandwidth to keep the compute fed at

scale

Big Data Summit 2018
12

Copyright 2018 Cray, Inc.

Parallelization Techniques

● Data Parallelism
● Divides global mini-batch among processes

● Two methods for this:

● Synchronous: single model (possibly replicated across all processes) updated with
globally averaged gradients every iteration

● Asynchronous: processes provide gradients every iteration but are allowed to fall out
of sync from one another. Processes each have their own model that may or may
not be the same as any other process

● Model Parallelism
● Single model with layers decomposed across processes

● Activations communicated between processes

● Synchronous data parallel approach is most common, today…

Big Data Summit 2018
13

Copyright 2018 Cray, Inc.

Data Parallelism - Collective-based Synchronous SGD

● Data parallel training divides a global mini-batch of examples across processes
● Each process computes gradients from their local mini-batch
● Average gradients across processes
● All processes update their local model with averaged gradients (all processes have the

same model)

● Not shown is the I/O activity of reading training samples (and possible augmentation)

Compute
intensive

Communication
intensive

Typically not
much compute

Big Data Summit 2018
14

Copyright 2018 Cray, Inc.

Distributed TensorFlow

● TensorFlow’s native method for
parallelism uses ClusterSpec API and
gRPC layer

● Can be difficult to use and optimize.
User must specify:
● hostnames and ports for all worker and

parameter server processes

● # of workers

● # of parameter server processes

● Chief process of workers

● Number of parameter servers (PS)
processes to use is not clear
● Too few PS results in many-to-few

communication pattern (very bad) and
stalls delivering updated parameters

● Too many PS results in many-to-many
communication pattern (also bad)

● Users typically have to pick a scale
and experiment for best performance

Big Data Summit 2018
15

Copyright 2018 Cray, Inc.

Distributed TensorFlow Scaling on Cray XC40 - KNL

0%

20%

40%

60%

80%

100%

120%

1 4 16 64

E
ff
ic

ie
n

c
y

Workers

ResNet-50 with 1

PS

From Mathuriya et al. @ NIPS 2017

Big Data Summit 2018
16

Copyright 2018 Cray, Inc.

Scalable Synchronous Data Parallelism

● The performance and usability issues with distributed TensorFlow can be addressed
by adopting an MPI communication model

● Resources dedicated to gradient calculation
● An MPI collective based approach would eliminate the need for PS processes and

likely be optimized without intervention from the user
● TensorFlow does have an MPI option, but it only replaces gRPC point to point

operations with MPI
● Collective algorithm optimization in MPI not used

input

model

input

model

input

model

Update Update Update

add add addScalable Global Add

.

.

Device 1 Device 2 Device n

P P P

ΔP
Client Client Client

Big Data Summit 2018
17

Copyright 2018 Cray, Inc.

Cray Programming Environment Machine Learning
Plugin (CPE ML Plugin)
● DL communication plugin with Python and C APIs

● Optimized for TensorFlow but also portable to other
frameworks (testing with PyTorch now)
● Callable from C/C++ source

● Called from Python if data stored in NumPy arrays or
Tensors

● Does not require modification to TensorFlow source
● User modifies training script

● Uses custom allreduce specifically optimized for DL
workloads
● Optimized for Cray Aries interconnect and IB for Cray

clusters

● Tunable through API and environment variables
● Supports multiple gradient aggregations at once

with thread teams
● Useful for Generative Adversarial Networks (GAN), for

example

● Another alternative is Horovod from Uber

Big Data Summit 2018
18

Copyright 2018 Cray, Inc.

32
64

128
256
512

1024
2048
4096
8192

16384
32768

2 16 128 1024

Sa
m

pl
es

/s
ec

 (a
gg

re
ga

te
)

Nodes

ResNet50 Performance on XC40 (Cori KNL at NERSC)
Horovod and CPE ML Plugin

CPE ML Plugin - MBS=32 Horovod - MBS=32

Alchemist
An Apache Spark ó MPI Interface

A collaboration of Cray (Kristyn Maschhoff and Michael Ringenburg)
and the UC Berkeley RiseLab (Alex Gittens, Kai Rothauge, Michael W. Mahoney, Shusen

Wang, and Jey Kottalam)

Slides courtesy Kai Rothauge

MPI vs Spark
• Cray, NERSC, and AMPLab performed case study for numerical linear algebra on

Spark vs. MPI

• Why do linear algebra in Spark?

• Pros:
• Faster development, easier reuse
• One abstract uniform interface (RDD)
• An entire ecosystem that can be used before and after the NLA computations
• Spark can take advantage of available local linear algebra codes
• Automatic fault-tolerance, out-of-core support

• Con:
• Classical MPI-based linear algebra implementations will be faster and more efficient

Slides courtesy Kai Rothauge, UC Berkeley

Rank 20 PCA of 2.2TB oceanic data
MPI vs Spark

A. Gittens et al. “Matrix factorizations at scale: A comparison

of scientific data analytics in Spark and C+MPI using three

case studies”, 2016 IEEE International Conference on Big Data

(Big Data), pages 204–213, Dec 2016.

• Performed a case study for
numerical linear algebra on
Spark vs. MPI:
• Matrix factorizations

considered include Principal
Component Analysis (PCA)

• Data sets include
• Oceanic data: 2.2 TB
• Atmospheric data:

16 TB

Slides courtesy Kai Rothauge, UC Berkeley

MPI vs Spark: Lessons learned

• With favorable data (tall and skinny) and well-adapted algorithms, linear

algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads are orders of magnitude higher than the actual

computations

• Overheads include time until stage end, scheduler delay, task start delay, executor

deserialize time, inefficiencies related to running code via JVM

• The gaps in performance suggest it may be better to interface with

MPI-based codes from Spark

Slides courtesy Kai Rothauge, UC Berkeley

Alchemist

• Interface between Apache Spark and existing MPI-based libraries for NLA,
ML, etc.

• Design goals include making the system easy to use, efficient, and scalable
• Two main tasks:

• Send distributed input matrices from Spark to MPI-based libraries
(Spark => MPI)

• Send distributed output matrices back to Spark (Spark <= MPI)
• Minimize overhead when transferring data between Spark and library

Slides courtesy Kai Rothauge, UC Berkeley

Truncated SVD Alchemist vs Pure Spark

176 211 295
495

1272

1527

DNF DNF

25 GB 50 GB 100 GB 200 GB

Alchemist Pure Spark

• Use Alchemist and MLlib to get

rank 20 truncated SVD

• Setup:

• 30 KNL nodes, 96GB DDR4,

16GB MCDRAM

• Spark: 22 nodes; Alchemist: 8

nodes

• A: m-by-10K, where m = 5M,

2.5M, 1.25M, 625K, 312.5K

• Ran jobs for at most 60 minutes

(3600 s)

• Alchemist times include data

transfer

Slides courtesy Kai Rothauge, UC Berkeley

Future Work
• Support for additional MPI-based libraries

• And make it easier to add new ones
• Enable running on AWS EC2
• Ray + Alchemist?
• More info:

• CUG 2018: “Alchemist: An Apache Spark <=> MPI Interface”, Alex Gittens, Kai Rothauge,
Shusen Wang, Michael W. Mahoney, Jey Kottalam, Lisa Gerhardt, Prabhat, Michael
Ringenburg, Kristyn Maschhoff, https://arxiv.org/abs/1806.01270

• KDD 2018 (upcoming): “Accelerating Large-Scale Data Analysis by Offloading to High-
Performance Computing Libraries using Alchemist”, Alex Gittens, Kai Rothauge, Shusen
Wang, Michael W. Mahoney, Lisa Gerhardt, Prabhat, Jey Kottalam, Michael Ringenburg, Kristyn
Maschhoff, https://arxiv.org/abs/1805.11800

Try it out at github.com/alexgittens/alchemist

Slides courtesy Kai Rothauge, UC Berkeley
2

26

The Future?

Big Data Summit 2018 Copyright 2018 Cray, Inc.

End-to-End Data Science Workflows
● Data science workflows are far more

complex than just training and queries
● Data preparation
● Feature selection
● (Hyper-) parameter tuning
● Model ensembles
● Model rationale/interpretability and

unlearning

● Discovering the right workflow more
costly than even the largest ML
training
● ML engineer’s 80/20 rule
● Often iterative/exploratory – requires

interactivity/near-real time exploration

27
Big Data Summit 2018 Copyright 2018 Cray, Inc.

Native Lib
Python

Native Lib
Python

Native Lib
Python

Native Lib
Python

A Vision for Data Science Workflows

● Complete, integrated, intelligent framework for data science workflows
● Modularity and extensibility: Defined, open APIs
● Ease-of-use: Framework handles back end job and data management
● Intelligence: Intelligent workflow search strategies
● Interactive speed: Leverage parallel I/O, interconnect, and compute to allow interactive speed exploration
● Portability: Run on laptop or supercomputer

28

Native Lib
Python

Workflow
Framework

M O D E L G O V E R N A N C E

Big Data Summit 2018 Copyright 2018 Cray, Inc.

Convergence of AI, Analytics, and Simulation

● How can AI help simulation, and
how can simulation help AI?
● Trained models to replace expensive

computations with “good enough”
approximations

● Training models on simulated results
● Machine learning to choose optimal

simulation parameters (“tuning knobs”)
● Leverage full capabilities of

hardware
● Increase utilization
● Reduce data movement
● Simplify workflows

29

1
2

3

...
... ...

...

Big Data Summit 2018 Copyright 2018 Cray, Inc.

Legal Disclaimer

30

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

Big Data Summit 2018 Copyright 2018 Cray, Inc.

31

Questions?

Big Data Summit 2018 Copyright 2018 Cray, Inc.

